

Code sujet: 280

Conception: HEC Paris

OPTION SCIENTIFIQUE

MATHÉMATIQUES

Mercredi 26 avril 2017, de 8 h. à 12 h.

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les candidats sont invités à encadrer dans la mesure du possible les résultats de leurs calculs.

Ils ne doivent faire usage d'aucun document. L'utilisation de toute calculatrice et de tout matériel électronique est interdite. Seule l'utilisation d'une règle graduée est autorisée.

Si au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il la signalera sur sa copie et poursuivra sa composition en expliquant les raisons des initiatives qu'il sera amené à prendre.

Dans tout le problème :

- pour tout entier naturel n, on note $\mathbf{R}_n[X]$ l'espace vectoriel des polynômes à cœfficients réels de degré inférieur ou égal à n;
- on identifie le polynôme $P = \sum_{k=0}^{n} \lambda_k X^k$ de $\mathbf{R}_n[X]$ avec la fonction polynomiale $x \longmapsto \sum_{k=0}^{n} \lambda_k x^k$, avec la convention $0^0 = 1$;
- on rappelle la formule de Stirling : n! est équivalent à $n^n e^{-n} \sqrt{2\pi n}$ lorsque l'entier n tend vers $+\infty$.

Le problème a pour objet l'approximation d'une fonction réelle par des fonctions polynomiales.

Dans la partie I, on étudie le cas des polynômes de Bernstein. Les parties II et III sont consacrées aux polynômes d'interpolation de Lagrange.

Les parties II et III sont indépendantes de la partie I.

Partie I. Quelques propriétés des polynômes de Bernstein

Pour tout entier $n \in \mathbb{N}^*$ et tout entier $k \in [0, n]$, on note $B_{n,k}$ le polynôme de $\mathbf{R}_n[X]$ défini par :

$$B_{n,k}(X) = \binom{n}{k} X^k (1-X)^{n-k}.$$

On pose pour tout $k \in [0, n]$, $A_k = X^k$ et on note $\mathcal{C}_n = (A_0, A_1, \dots, A_n)$ la base canonique de $\mathbf{R}_n[X]$.

Soit T_n l'application définie sur $\mathbf{R}_n[X]$ telle que : $\forall P \in \mathbf{R}_n[X], (T_n(P))(X) = \sum_{k=0}^n P\left(\frac{k}{n}\right) B_{n,k}(X)$.

- 1. Dans cette question uniquement, on choisit n=2.
 - a) Déterminer la matrice K_2 de la famille $(B_{2,0}, B_{2,1}, B_{2,2})$ dans la base \mathcal{C}_2 .
 - b) En déduire que la famille $(B_{2,0}, B_{2,1}, B_{2,2})$ est une base de $\mathbf{R}_2[X]$.

- c) Calculer $T_2(A_0)$, $T_2(A_1)$ et $T_2(A_2)$; déterminer la matrice H_2 de T_2 dans la base C_2 . Préciser les valeurs propres et les sous-espaces propres de T_2 .
- 2. On revient au cas général où n est un entier supérieur ou égal à 1.
 - a) Montrer que la famille $(B_{n,0}, B_{n,1}, \ldots, B_{n,n})$ est libre; en déduire que cette famille est une base de $\mathbf{R}_n[X]$.
 - b) Montrer que l'application T_n est un automorphisme de $\mathbf{R}_n[X]$.
 - c) Calculer $T_n(A_0)$ et montrer que $T_n(A_1) = A_1$.
 - d) Montrer que pour tout $k \in [0, n]$, le degré du polynôme $T_n(A_k)$ est égal à k. Pour établir ce résultat, on pourra utiliser la propriété suivante que l'on ne demande pas de démontrer :

$$\forall k \in [0, n-1], \ \big(T_n(A_{k+1})\big)(X) = \frac{1}{n}X(1-X)\big(T_n(A_k)\big)'(X) + X\big(T_n(A_k)\big)(X)$$

où $\big(T_n(A_k)\big)'$ est le polynôme dérivé de $T_n(A_k)$.

- e) Pour tout $k \in [0, n]$, soit α_k le coefficient de X^k du polynôme $T_n(A_k)$. Calculer α_k en fonction de k et n. L'automorphisme T_n est-il diagonalisable?
- 3. Soit f une fonction continue sur [0,1]. On pose : $\forall n \in \mathbb{N}^*$ et $\forall z \in [0,1]$, $f_n(z) = \sum_{k=0}^n f\left(\frac{k}{n}\right) B_{n,k}(z)$.

Soit $z \in [0,1]$. Soit $(\Omega, \mathcal{A}, \mathbf{P})$ un espace probabilisé et pour tout $n \in \mathbf{N}^*$, soit Z_n une variable aléatoire définie sur cet espace suivant la loi binomiale de paramètres n et z. Pour tout $n \in \mathbf{N}^*$, on pose : $\overline{Z}_n = \frac{Z_n}{n}$.

- a) Montrer que la suite de variables aléatoires $(\overline{Z}_n)_{n\geqslant 1}$ converge en probabilité vers le réel z.
- b) Justifier l'existence de $M = \max_{\{0,1\}} |f|$.
- c) Soit ε un réel strictement positif. Pour tout $n \in \mathbb{N}^*$, soit U_n l'événement : $U_n = \left| \left| f(\overline{Z}_n) f(z) \right| > \varepsilon \right|$. On note $\mathbf{1}_{U_n}$ la variable indicatrice de l'événement U_n et \overline{U}_n l'événement contraire de U_n . Établir l'inégalité : $\left| f(\overline{Z}_n) f(z) \right| \leqslant 2M \times \mathbf{1}_{U_n} + \varepsilon \times \mathbf{1}_{\overline{U}_n}$.
- d) Montrer que $\lim_{n\to +\infty} \mathbf{E}(f(\overline{Z}_n)) = f(z)$. En déduire que $\lim_{n\to +\infty} f_n(z) = f(z)$.
- 4.a) Compléter le code Scilab suivant afin qu'un appel à la fonction binom(n,z) renvoie une réalisation d'une loi binomiale de paramètres n et z.

function Z=binom(n,z)

Z=

endfunction

b) Soit une fonction Scilab f et une variable z définies par :

function y=f(x)

if x=0 then y=0, else y=-x*log(x), end

endfunction

z=0.4

On considère le code Scilab suivant :

n=100; N=1000

S=0

for k=1; N

S=S+f(binom(n,z)/n)

end

disp(S/N)

Ce code affiche une valeur approchée d'une certaine quantité. Laquelle? Cette valeur affichée est le résultat de la mise en œuvre de certaines méthodes. Lesquelles?

Partie II. Les polynômes d'interpolation de Lagrange

- 5. Soit $n \in \mathbb{N}^*$ et x_0, x_1, \ldots, x_n des réels deux à deux distincts. Soit Φ l'application de $\mathbb{R}_n[X]$ dans \mathbb{R}^{n+1} telle que : $\forall P \in \mathbb{R}_n[X], \ \Phi(P) = (P(x_0), P(x_1), \ldots, P(x_n)).$
 - a) Montrer que l'application Φ est un isomorphisme d'espaces vectoriels.
 - b) On note $(e_0, e_1, ..., e_n)$ la base canonique de \mathbf{R}^{n+1} avec $e_0 = (1, 0, 0, ..., 0), e_1 = (0, 1, 0, ..., 0),$ et $e_n = (0, 0, 0, ..., 1)$. Pour tout $i \in [0, n]$, on note L_i le polynôme de $\mathbf{R}_n[X]$ tel que $\Phi(L_i) = e_i$.

Montrer que pour tout $i \in \llbracket 0, n \rrbracket$, on $\mathbf{a} : L_i(X) = \prod_{\substack{k \in \llbracket 0, n \rrbracket \\ k \neq i}} \frac{X - x_k}{x_i - x_k}$.

c) Soit Ψ l'application définie sur $(\mathbf{R}_n[X])^2$ par : $\forall (P,Q) \in (\mathbf{R}_n[X])^2$, $\Psi(P,Q) = \sum_{k=0}^n P(x_k)Q(x_k)$.

Vérifier que Ψ est un produit scalaire sur $\mathbf{R}_n[X]$. On munit alors $\mathbf{R}_n[X]$ de ce produit scalaire.

Montrer que (L_0, L_1, \ldots, L_n) est une base orthonormée de $\mathbf{R}_n[X]$.

- d) Expliciter la matrice A de passage de la base (L_0, L_1, \ldots, L_n) à la base canonique \mathcal{C}_n de $\mathbf{R}_n[X]$.
- e) Soit f une fonction continue sur ${\bf R}$ à valeurs réelles.

Montrer que pour tout $n \in \mathbb{N}^*$, il existe un unique polynôme de $\mathbb{R}_n[X]$, noté P_f , vérifiant les relations :

$$P_f(x_0) = f(x_0), P_f(x_1) = f(x_1), \dots, P_f(x_n) = f(x_n).$$

On dit que P_f est le polynôme d'interpolation de la fonction f aux points x_0, x_1, \ldots, x_n . Exprimer P_f dans la base (L_0, L_1, \ldots, L_n) .

6. Soit x_0, x_1, \ldots, x_n des réels appartenant à un intervalle [a, b] (a < b) tels que $a \le x_0 < x_1 < \cdots < x_n \le b$. Soit f une fonction de classe C^{n+1} sur [a, b] et \overline{x} un réel de [a, b] différent de x_0, x_1, \ldots, x_n . On note P_f le polynôme d'interpolation de la fonction f aux points x_0, x_1, \ldots, x_n et Q_f le polynôme

d'interpolation de la fonction f aux points $x_0, x_1, \ldots, x_n, \overline{x}$. On pose : $w(X) = \prod_{k=0}^n (X - x_k)$.

- a) Établir l'existence d'un réel δ tel que pour tout $t \in [a, b]$, on a : $Q_f(t) P_f(t) = \delta \times w(t)$.
- b) Soit h la fonction définie sur [a, b] par : $\forall t \in [a, b], h(t) = f(t) Q_f(t)$.

Montrer que la fonction h s'annule en les (n+2) points $\bar{x}, x_0, x_1, \ldots, x_n$ et en déduire l'existence d'un réel $\theta \in]a, b[$ tel que $h^{(n+1)}(\theta) = 0$.

- c) Établir l'égalité : $f(\overline{x}) P_f(\overline{x}) = \frac{1}{(n+1)!} \times f^{(n+1)}(\theta) \times w(\overline{x}).$
- d) En déduire que pour tout $t \in [a, b]$, on a : $|f(t) P_f(t)| \le \frac{1}{(n+1)!} \times |w(t)| \times \sup_{[a, b]} |f^{(n+1)}|$.

Partie III. Exemple d'interpolation et phénomène de Runge

Dans cette partie, on suppose que l'entier n appartient à N* et n'est plus fixé.

Pour tout $k \in \llbracket 0, n \rrbracket$, on pose : $x_{k,n} = -1 + \frac{2k}{n}$.

Pour tout réel $\rho > 0$, on note f_{ρ} la fonction définie sur R telle que : $\forall x \in \mathbb{R}, \ f_{\rho}(x) = \frac{1}{x^2 + \rho^2}$

Pour tout $n \in \mathbb{N}^*$ et pour tout $\rho > 0$, on note $P_{f_{\rho},n}$ le polynôme d'interpolation aux points $x_{0,n}, x_{1,n}, \dots, x_{n,n}$ de la fonction f_{ρ} .

Pour tout $n \in \mathbb{N}^*$, on pose : $w_n(X) = \prod_{k=0}^n (X - x_{k,n})$.

Cette partie se propose de mettre en évidence des conditions suffisantes de convergence de la suite $(P_{f_{\rho},n}(x))_{n\geqslant 1}$ vers $f_{\rho}(x)$ pour x appartenant à un intervalle $I\subset \mathbf{R}$.

- 7.a) Justifier que la fonction f_{ρ} est de classe C^{∞} sur R.
 - b) Montrer que pour tout $n \in \mathbb{N}^*$ et pour tout $x \in \mathbb{R}$, on a : $\left| f_{\rho}^{(n)}(x) \right| = \left| f_{\rho}^{(n)}(-x) \right|$.
 - c) Montrer que pour tout réel x vérifiant $|x| < \rho$, on a : $\frac{1}{x^2 + \rho^2} = \sum_{k=0}^{+\infty} \frac{(-1)^k}{\rho^{2k+2}} x^{2k}.$
- 8. Dans cette question, on admet le résultat qui suit.

Pour tout $k \in \mathbb{N}$, soit A_k la fonction définie sur \mathbb{R} par : $A_k(t) = t^k$. Soit R un réel strictement positif. Soit $(u_k)_{k \in \mathbb{N}}$ une suite réelle. On suppose que pour tout $t \in]-R$, R[, la série de terme général $u_k \times A_k(t)$ est convergente ; on note $\varphi(t)$ sa somme.

Alors, la fonction φ est de classe C^{∞} sur]-R, $R[\ et\ \forall\ t\in]-R$, $R[\ et\ \forall\ n\in\mathbb{N}^*,\ on\ a:\varphi^{(n)}(t)=\sum_{k=0}^{+\infty}u_k\times A_k^{(n)}(t)$.

Soit $\rho > 0$. On pose : $\forall x \in]-\rho, \rho[, \ v(x) = \frac{\rho^2}{\rho^2 - x^2}$.

- a) Déterminer les réels p et q pour lesquels on a : $\forall x \in]-\rho, \rho[, v(x) = \frac{p}{\rho x} + \frac{q}{\rho + x}]$
- b) Comparer pour tout $n \in \mathbb{N}^*$ et pour tout $x \in]-\rho, \rho[, |v^{(n)}(x)|$ et $|v^{(n)}(-x)|$.
- c) Montrer que pour tout $x \in]-\rho, \rho[$ et pour tout $n \in \mathbb{N}^*$, on $a: \left|f_{\rho}^{(n)}(x)\right| \leqslant \frac{1}{\rho^2} \times |v^{(n)}(x)|$.
- d) On suppose que $\rho > 1$. Montrer que pour tout $x \in [-1, 1]$ et pour tout $n \in \mathbb{N}^*$, on a :

$$\left|f_{\rho}^{(n)}(x)\right|\leqslant\frac{1}{\rho}\times\frac{n!}{(\rho-1)^{n+1}}\cdot$$

- 9. Pour $x \in [-1, 1]$ avec $x \notin \{x_{0,n}, x_{1,n}, \dots, x_{n,n}\}$, soit k l'entier de [0, n-1] tel que $x \in [x_{k,n}, x_{k+1,n}]$.
 - a) Établir les inégalités : $|w_n(x)| \leq \left(\frac{2}{n}\right)^{n+1} \times (k+1)! (n-k)! \leq \left(\frac{2}{n}\right)^{n+1} \times n!$
 - b) À l'aide de la formule de Stirling (rappelée dans le préambule du problème), montrer qu'il existe un entier n_0 tel que pour tout $n \ge n_0$, on a pour tout $x \in [-1,1]: |w_n(x)| \le \left(\frac{2}{e}\right)^{n+1}$.
 - c) Déduire des questions 6.d), 8.d) et 9.b) qu'une condition suffisante pour que $\lim_{n\to +\infty} |f_{\rho}(x) P_{f_{\rho},n}(x)| = 0$ pour tout $x \in [-1,1]$, est $: \rho > 1 + \frac{2}{e}$.
- 10.a) On pose : $\forall \rho > 0$, $H(\rho) = \frac{1}{4} \int_{-1}^{1} \ln{(t^2 + \rho^2)} dt$. À l'aide d'une intégration par parties, calculer $H(\rho)$.

Montrer que la fonction H est prolongeable par continuité en 0. On note encore H la fonction prolongée.

- b) Montrer que la fonction H réalise une bijection strictement croissante de \mathbb{R}_+ sur un intervalle à déterminer.
- c) Montrer qu'il existe un unique réel $\rho_0 > 0$ tel que $H(\rho_0) = \ln 2 1$. Montrer que $\rho_0 < 1$ (on donne $\ln 2 \simeq 0.693$).
- d) On note i le nombre complexe de module 1 et d'argument $\frac{\pi}{2}$ et $|i\rho|$ le module du nombre complexe $i\rho$. Vérifier que pour tout $\rho > 0$, on a : $|w_n(i\rho)| > 0$. Montrer alors que $\lim_{n \to +\infty} \frac{1}{n} \ln |w_n(i\rho)| = H(\rho)$.

11. La fonction Arctan est codée dans le langage Scilab par atan,

Le programme suivant renvoie une valeur approchée d'un réel s_0 à 0.001 près.

- a) Quelle est la méthode mise en œuvre dans ce programme? Donner une équation vérifiée par s_0 .
- b) Comparer s_0 et ρ_0 .
- 12. Pour tout $n \in \mathbb{N}^*$, on pose : $S_n(X) = 1 (X^2 + \rho^2) P_{f_n,n}(X)$.
 - a) Montrer que le polynôme w_n divise le polynôme S_n .
 - b) Montrer que le polynôme $P_{f_a,n}$ est pair.
 - c) Pour tout $n \in \mathbb{N}^*$, on pose : $y_n = 1 \frac{1}{n} \cdot \text{Exprimer } |w_n(y_n)|$ en fonction de n.

 Trouver un équivalent de $|w_n(y_n)|$ lorsque n tend vers $+\infty$, de la forme $\frac{\tau}{n} \times \sigma^n$, où τ et σ sont des réels strictement positifs que l'on déterminera.
 - d) On admet sans démonstration que : $\lim_{n \to +\infty} \left(\ln |w_n(i\rho)| nH(\rho) \right) = 0.$ Déduire de ce résultat admis et de la question 12.c), un équivalent de $\left| \frac{w_n(y_n)}{w_n(i\rho)} \right|$ lorsque n tend vers $+\infty$.

Dans les questions 13 et 14, on suppose que n est impair.

- 13.a) Montrer que $w_n(i\rho) \in \mathbf{R}^*$ et exprimer $S_n(X)$ en fonction de $w_n(X)$ et $w_n(i\rho)$.
 - b) En déduire que pour tout $x \in [-1, 1]$, on a : $|f_{\rho}(x) P_{f_{\rho}, n}(x)| = f_{\rho}(x) \times \left| \frac{w_n(x)}{w_n(i_{\theta})} \right|$
- 14. On suppose que $0 < \rho < \rho_0$.
 - a) Déterminer $\lim_{n\to+\infty} \left| f_{\rho}(y_n) P_{f_{\rho},n}(y_n) \right|$.
 - b) En déduire que $\lim_{n \to +\infty} \sup_{[-1,1]} \left| f_{\rho}(x) P_{f_{\rho},n}(x) \right| = +\infty$ (phénomène de Runge).